Endurance
1977 EMD 16-645E6
Anybody here think their truck will still be in service 111 years from now? Here’s a 118 year old tugboat that remained in service for all but seven years of it’s life. The tug we now know as Ohio started life in 1903 as Milwaukee Fire Department No. 15. Just over 106 feet long with a sturdy ice-breaking hull, she was originally powered by a reciprocating steam engine. Built in Chicago as a fire boat, she was equipped with three American Fire Pump Company fire pumps and could push 9,000 gallons per minute through two large and numerous small water cannons. Because she was built to serve Milwaukee, it was appropriate #15 be christened with beer rather than champagne. She singed her stack more than once fighting fires on the waterfront and served Milwaukee for 45 years before being retired in 1948.
In 1952 Great Lakes Towing Company (GLT) bought the vessel and started an extensive overhaul to convert her into a diesel tugboat. Out came the steam plant and firefighting gear and in went a World War II surplus, 1,700 horsepower Cleveland Diesel 16-278A Navy Propulsion Diesel Generator Package that had been removed from a scrapped, war-weary destroyer escort (which mounted four such units). With a sleek new superstructure and modern towing gear, she embarked on a fresh life in 1954 as the Lawrence C. Turner, renamed Ohio in 1973.
In 1977, the well used 16-278A diesel-electric plant was replaced by a new 1950 horsepower EMD 16-645E6 marine diesel backed up by a Falk gearbox turning an 8-foot diameter, five-bladed propeller. The tug then continued to work the lakes until being retired in 2014. In 2018, GLT donated the historic vessel to the National Museum of the Great Lakes, at Toledo, Ohio and after a year of cosmetic repair and refurbishment, she became available to tour and enjoy at the museum. Her 2019 dedication at the museum was held jointly with the christening of the new Ohio, officially ending one working career and beginning another.
Winton, General Motors, Cleveland, Electro-Motive and EMD
The EMD diesels of today have a storied history that goes back to 1911 and an engineer named Alexander Winton. Scottish born in 1860, Winton was the son of a marine engineer and emigrated to the United States in 1879. Young Winton took an engineering job at a factory, later working as a marine engineer. In 1891, he had saved enough money to start the Winton Bicycle Company but soon got interested in automobiles and transitioned onto the Winton Motor Carriage Company in 1897. Winton was one of the first in the car industry to discover the advertising benefits of having a racing team. He notably competed against none other than Henry Ford, who was also a fledgling car manufacturer at the time. Loosing to Ford didn’t seen to hurt his business either. Winton was a prolific inventor, with more than 100 patents in his name and is generally credited with inventing the 5th wheel trailer concept. Winton built well-regarded cars and trucks but that business gradually faded as his other business flourished. In 1924, Winton shut the car factory down to focus on his engine business.
By 1911, Winton had grown wealthy and commissioned the construction of a large motor yacht to be called LeBelle after his wife. He was active in its design and construction but chagrinned at the lack of what he considered suitable engine choices. At the end of a fruitless search, he determined to design and build his own engines. In that process, Winton Engine Company was formed and began producing engines in 1914. It started with gasoline engines but soon began producing oil and distillate engines, eventually full diesels, mostly for marine use.
A few years down the road, one of Winton’s earliest large-scale customers proved to be an historic nexus. Electro-Motive Company (EMC) was a builder of gasoline-electric rail cars… gasoline engines powering generators that powered electric motors. What we would can a hybrid drive today. They had started in 1922, just as Winton’s engine business was really hitting it’s stride. Winton built gasoline and distillate engines for EMC, the two firms forming a happy business relationship.
By 1930, Alexander Winton was 70 years old and presumably ready to retire. When General Motors made an offer to buy Winton Engine Company, that offer was accepted and it became a division of GM on June 20, 1930. GM wanted Winton to jump start a 2-stroke diesel engine development that had begun a couple of years earlier. During the acquisition, they discovered EMC was one of Winton’s largest clients. GM saw potential in the idea of internal combustion-electric rail vehicles and soon purchased EMC as well to gain a foothold in that business.
From here, it was a flurry of diesel development. The research GM had done was mingled with the research, expertise and experience of the Winton engineering team and the highly competent EMC team. By 1933, they had developed the Winton 8-201, an inline, 1,608 cubic inch, 8-cylinder 2-stroke diesel with an 8 x 10-inch bore and stroke, making 600 horsepower. Two preproduction units were operated at the 1933 Chicago “Century of Progress” World’s Fair, garnering a substantial amount of publicity.
Developed primarily for rail use, the updated production 201A Series diesel found a high-profile home in the lovely Burlington Zephyr streamliner built to Burlington specs in conjunction with Budd Company in 1934. It was the first diesel-electric locomotive in mainline service, hitting speeds of over 112 mph on its inaugural run between Denver and Chicago. The hoopla surrounding that locomotive became the incentive for EMC to develop it’s own line of diesel-electrics and now you know the beginning of the ongoing story of the legendary Electro-Motive diesel-electric locomotives.
From the mid-1930s on, Winton, GM and EMC worked separately but together to develop and market products that incorporated the basic two-stroke Uniflow ideas fine tuned at the GM Research Division. Winton, GM and EMC all had slightly different markets and objectives but the base engine technology worked for all. Winton (which became the Cleveland Diesel Engine Division, CDED, in 1937) carried the marine and stationary markets. GM’s Detroit Diesel Division (eventually) developed and marketed smaller road, marine and stationary diesels that started with the 71-Series. EMC worked in the rail market, mostly building locomotives and the 201A was their mainstay. These were not exclusive divisions of labor but mostly so.
CDED went on to fine tune the basic 201A design while realizing the need for an update. In 1938 they debuted the 567 Series, which was built under the Cleveland banner until 1941. That year EMC became EMD (Electro-Motive Division) and were tasked with all work related to rail applications, including engine development and they more or less took over the 567 as a locomotive engine. Cleveland Engine incorporated the lessons learned with the 567 into engines more suited to their marine and stationary markets. WWII would put EMD to building marine engines for the war effort but after the war they would revert back to doing mostly rail work.
201 + 567=645
Production of the 201A at CDED was prolific but the engine had a weak link, namely piston, ring and liner life. Winton, EMC and GM Research worked together on this problem. It was partly a lubricant problem but mostly an engine design issue that could not be solved in a piecemeal way. After much fruitless effort on quick fixes, it was deemed more cost effective to design a new engine. The end result was the 567 series launched in 1938, 567 being the per-cylinder displacement as with all other Wintons. This development resulted in new designs that were built by CDED, the 248 Series, the later 278 series and a host of others.
Through World War II and well into the 1950s, CDED built a plethora of engines for all venues, very notably for submarines. When nuclear subs began dominating, engine production at CDED dwindled. The Navy had been CDED’s biggest single market and by 1962 things had slowed down enough that the CDED plant in Cleveland, Ohio. All engine manufacturing moved to the EMD plant in Illinois. EMD was dominating the diesel electric locomotive market but would also produce marine and stationary engines and sales slowly picked up. Gradually, engine production would center around the 567 Series, regardless of the market.
The 567 Series was originally offered in V6, V8, V12 and V16 configurations with an 8.5 x 10 inch bore and stroke. Like all the Uniflow engines, they used Roots blowers for scavenging. They produced air pressure just slightly above atmospheric pressure. In 1959, the 567D introduced turbocharging to the EMD lines. Only the V16 engines were so equipped but it boosted the power from a median 1,500 horsepower to 2,500. The compressor was mechanically driven at low speeds but as exhaust flow picked up, the clutch would kick out and the turbine would take over. In marine applications, the 16-567D was rated for up to 2,400 horses. In rail use, the upper rating was 2,850 horsepower. Everybody liked the power but the turbo units were problematic, so over years in service, many 567Ds were reverted back to Roots blowers to 567Cs with up to about 2,000 horsepower outputs.
By the mid-1960s, the 567 got an upgrade in displacement. Introduced in 1965, the 645 Series had a bore increase from 8.5 to 9.1-inches and produced approximately 160 horsepower per cylinder in the marine form. The 645 would go a long time in service but would be replaced by the similar 710 Series, the increase in displacement achieved by an inch more stroke.
The Old and the New
Various descendants of the 567 are still in production and widely used in all venues, though rail is still the primary one. That’s 83 years of service… longer if you count the 201A as part of the family. The older engines are still plentiful in commercial maritime use, though the EPA sometimes offers incentives to commercial operators to repower vessels with more modern engines. Such programs, and new Coast Guard regulations on commercial vessels, have sealed the fate of many old tugs like Ohio. In theory, a hull operated in fresh water has a nearly unlimited life and can be repowered numerous times but a tug is lot’s more than a powerplant. The drive systems of tugboats have evolved and the performance of the latest ones is well beyond anything the old Ohio could do, even with a new, emissions-friendly powerplant.
Sources
Great Lakes Towing
http://thegreatlakesgroup.com/the-great-lakes-towing-company
National Museum of the Great Lakes
https://nmgl.org